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Abstract  
 

“Neural Network Control of an Integrated Power System” 
 

Neural networks are investigated for fault tolerant stabilization and control of an Integrated 
Power System (IPS).  Neural networks can be robust in the sense that they are not disabled 
by incomplete or inconsistent information.  As non-model based observers, neural networks 
are ideally suited to estimation of complex, interactive power systems.  Specifically, the 
ability of neural networks to adapt to uncertain eventualities such as flooding, fire, and 
combat casualties is investigated.  The IPS under consideration will provide integrated 
propulsion and ship’s service power generation and distribution for the next generation of 
U.S. Navy surface ships also known as the DD-21.  These solid state power systems involve 
nonlinear dynamics which can lead to “negative impedance” instability and voltage collapse.  
Feedforward back-propagating neural networks were evaluated with respect to variable 
structure and data degradation.  This research represents an initial step toward unifying 
nonlinear, negative impedance stabilization with robust neural network fault detection and 
isolation.   The Naval Sea Systems, Integrated Power System and the Office of Naval 
Research, Electrically Reconfigurable Ship programs motivated this research.   
 

Keywords 
 
Neural Networks, Integrated Power System, Nonlinear Control Systems 
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Nomenclature 
 
Backpropagation:  a neural network learning characteristic in which the error is sent 
 through the network from the output layer to the hidden layer(s) and then finally  
 reaching the input layer. 
 
Connection:  the conduit supplying information from one neuron to the next neuron. 
 
Epochs:  the number of passes through a data file a neural network will make before  
 updating the weights. 
 
Fault Tolerance: ability of a system to continue to function when components of the   
 system fail or are degraded. 
 
Feedforward:  a type of neural network in which the data is sent directly from the input 
  to the respective hidden layers and then directly to the output layer. 
 
Hyperbolic Tangent (TanH):  a transfer function used to relate neuron input and output 

 values in neural networks.  It has an output range of –1 to 1.    
I' -I'

I' -I'

( )
T = 

( )
e e
e e

−
+

,  

 where I’=I*Gain. 
 
Input : data entered into the neural network; parameters measured from the system. 
 
Layer:  a grouping of neurons with the same transfer function and learning rule.  
 
Learning: the process by which a neural network adjusts its weights to model a 
 relationship between the input and output data. 
 
Neuron: the most basic element of a neural network.  The learning rule and transfer 
 function are applied directly to this component. 
 
Output:  data that is either produced by the neural network or is desired by the system. 
 
Processing Element: see Neuron. 
 
Robustness:  ability of the system to deal with large changes in measured quantities and  
 evolving topology or architecture of the system. 
 
Sensitivity:  capacity of a control system to determine minimal changes in measured 
 quantities within the system. 
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Testing: the evaluation of how well a neural network has learned by supplying the  
 network with input data and allowing it to predict outputs.  These predicted  
 outputs are then compared with the desired outputs to determine the accuracy of  
 the neural network. 
 
Tractable:  ability to be solved in simplified terms. 
 
Training:  see learning. 
 
Variable Structure: changes in a system’s physical configuration.  
 
Weights:  factor applied to the connections between neurons in a network.  It is determined  
 through the learning process. 
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1 Introduction 
 
The effective management of electrical power will only increase in importance, as the 
navigation, weapons, and propulsion systems aboard naval ships grow more complex in 
nature.  The need for efficient power management occurs during normal operations as well as 
casualty conditions such as flooding, fire, or enemy attack.  This requirement presents the 
engineer with a unique challenge.  The goal is to develop a system that is durable or robust 
and yet precise.  This system must be quick to respond to voltage collapse.  However, it must 
recognize routine changes in voltage as the ship carries on normal operations.  Essentially, 
the system must be able to “think.”  Thanks to neural networks, a reasoning control system is 
entirely possible. [1,2,3,4] 
 
The Naval Sea Systems Command, Integrated Power System (IPS) and the Office of Naval 
Research, Electrically Reconfigurable Ship (ERS) offer advanced power systems for 
deployment of advanced weapons, propulsion, and navigation systems on the next generation 
surface combatant.  Because these systems often operate at constant power, they demand 
continuous regulation to prevent negative impedance instability. 
 
Traditional control systems cannot perform these tasks due to the time constraints and the 
complexity of the control laws involved in managing the power system.  Fortunately, neural 
networks can predict the states of the system faster than models can determine the states 
analytically. The complexity of the control laws demands a controller that has the flexibility 
and adaptability to manage a constantly changing environment.  Neural networks possess this 
characteristic of robustness.  
 
Neural networks will provide an IPS controller with the necessary robustness and speed. 
Their application to this advanced power grid will not only enable the use of state-of-the-art 
solid state components, but will assure the flexibility and survivability of a ship which must 
endure the harshest of all conditions, combat. [5]   
 
This research explores the application of a neural network as a non-model based estimator of 
a shipboard power system.  This power system must have the ability to continue to operate in 
all conditions including combat.  In order to meet this demand, a controller for this power 
system must contend with multiple power plant configurations and corrupted data.   
This investigation strives to resolve these issues through the design of neural networks.  
These networks are trained, tested, and evaluated on data that is derived from a reference 
model of the shipboard power system.  The objective of this work is to provide a nonlinear, 
robust neural network as an alternative to traditional, linear controllers for the Integrated 
Power System.   
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2 Prior Work 

2.1 Integrated Power System 
 
The Secretary of the Navy has designated the next generation surface combatant, DD-21, as 
an Integrated Power System ship. The IPS is the next stage in an engineering design process 
that began in the 1970's with aero-derivative gas turbines.  These were the first turbines in the 
Navy that demanded automated control.  During the 1980's, the Navy procured the DDG-51 
which featured Tactical Digital Standards (TADSTANDS) including Navy Standard 
Electronic Modules (SEMS) and the AN/USQ-82 Data Multiplexing System (DMS).  Then, 
at the beginning of the 1990’s, the Navy upgraded to a system based primarily on 
commercial standards with the Standard Monitoring and Control System (SMCS).  SMCS 
included IEEE Futurebus+ computer backplane, IEEE Ethernet and ANSI Fiber Distributed 
Data Interface (FDDI) networks, and C software.  Key goals for the DD-21 include a 70% 
crew size reduction and the ability to “fight thru” combat damage. [5] 

 
To achieve these DD-21 goals, the Navy must develop an innovative control system.  This 
control system must be robust, dynamic, survivable, and stable.  Robustness involves the 
ability of the system to deal with large changes in measured quantities and evolving topology 
or architecture of the system.  By comparison, sensitivity is the capacity by which a control 
system can determine small changes in measured quantities within the system.   The control 
system must be dynamic, which is to say that it can change with time.  It cannot be inflexible 
and unable to adapt to new conditions including the addition of new hardware and the loss of 
sensors.  A key aspect of the neural network is its ability to distinguish between casualties 
and faulty data.  Finally, stability or the ability to maintain a desired level of performance is a 
major concern in any control system. 
     
 

2.2 Neural Networks 
 
Simon Haykin states [6] “a neural network is a massively parallel distributed processor that 
has a natural propensity for storing experiential knowledge and making it available for use.”  
Essentially, it is an attempt by mathematicians to model the biological process that the brain 
conducts in order for humans to think. 
    
The processing element of a neural network is equivalent to the human brain’s neurons.  
Mathematicians have modeled the neuron through this equation:                     

       
1

)
N

i i
i

y w x bϕ
=

= ( −∑                     (2.1) 

where x is the input, w is the weight, b is bias, and ϕ  is the transfer function, and y is the 
output of the neuron.  The processing element (PE) or neuron accepts inputs from either other 
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neurons or directly from the input source. The input is processed by multiplying the weight 
and the input less the bias and summed over a series of N iterations. The transfer function 
then transforms this sum into an output.  Other neurons may then accept this output as an 
input via connection weights that represent the strength of the connection within the network. 
 
In this research, linear transfer functions were employed for the input and output layers while 
hyperbolic tangent functions were used for the hidden layers. Linear transfer functions 
described algebraic relationships among the inputs and outputs. The hidden layers were 
composed of hyperbolic tangent functions, which are commonly used for nonlinear 
applications. The middle layers are called hidden because they do not receive nor transmit 
input or output data.     
    
Narendra and Parthasarathy [7] present an excellent discussion of the two fundamental 
theorems that support the mathematics behind neural networks.  These theorems are the 
Weierstrass Theorem and the Stone-Weierstrass Theorem.  The Weierstrass Theorem states 
that if C([a,b]) is a space of continuous real valued functions on the interval [ , ]a b  with the 
norm of f C([a,b]) ∈ defined by sup{ ( ) : [ , ]}f f t t a b= ∈ , then any functions in C([a,b]) can 
be approximated arbitrarily closely by a polynomial. This Weierstrass Theorem and its 
generalization to multiple dimensions are useful in approximating continuous functions 

: n mf →¡ ¡ using polynomials.  The Weierstrass Theorem is essentially the basis for pattern 
recognition.  In addition, the Stone-Weierstrass Theorem is a generalization of the 
Weierstrass Theorem by Stone.  This theorem states that [7]:  
 
if β  is a compact metric space and ρ  is a subalgebra of C( , )β ¡  which contains the 
constant functions and separates points of β , then ρ  is dense in C( , )β ¡ .  
 
The Stone-Weierstrass Theorem provides the basis for approximating bounded, continuous, 
time- invariant causal operators.  This result forms the foundation for the neural network 
approximation of dynamic systems. 
 
After the neural network has been constructed, the network must undergo a learning cycle in 
order to become productive. Learning is the process of modifying the weights to coincide 
with the correct output and input data.  There are two significant types of learning, 
supervised and unsupervised.  Supervised learning occurs when both input and output data 
are given to the network.  Unsupervised learning entails only giving the neural network input 
data and letting the network determine the output on its own.  This project will exclusively 
focus on supervised learning.  Networks can also be referred to as hetero-associative or auto-
associative.  Hetero-associative networks are trained on data that have outputs that are 
different from the inputs.  Auto-associative networks are trained on data in which both the 
input and output sets are identical. [8,9,10]   
 
A learning rule typically governs the adjustment of the neurons.  This project applies 
backpropagation methods via the Extended-Delta-Bar-Delta (EDBD) Learning Rule.   
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Backpropagation learning procedures assume that all weights are in error when an incorrect 
output is received.  Consequently, the error is sent back through each layer while modifying 
the weights in each connection until the error reaches the input layer and the modification of 
weights ceases.  The EDBD algorithm assigns a time-varying momentum rate, [k]µ , and a 
time-varying learning rate, [k]α , to each connection in the network (k is time) in order to 
train the network and limit the error between predicted output and desired output.  The 
variable learning rate and variable momentum rate yield: 

 
[k 1] [k]* [k] [k]* [k]  w wα δ µ∆ + = + ∆                     (2.2) 

 
and  

 
       [k 1] [k] [k 1]w w w+ = + ∆ +                (2.3) 
 
where w[k] and w∆ [k] are the connection weight and the connection delta weight 
respectively and time, k. [k]δ  is the gradient component of the weight change at time k.  
 

 
[k]

[k]
[k]

E

w
δ

∂
=

∂
                                                           (2.4) 

 
where E[k] is the value of the error at time k.  In order to provide greater increases in areas of 
lesser slope than in areas of higher gradients, [k]δ  is a weighted, exponential average of the 
previous gradient components at time k:  
 
 [k] 1 [k] [k+1]δ θδ θδ= − +                                (2.5) 
 
where θ  is the convex weighting factor.  Constants necessary to complete the EDBD 
algorithm are listed below: 
 

ακ   constant learning rate scale factor 

µκ    constant momentum rate scale factor 

αγ    constant learning rate exponential factor 

µγ    constant momentum rate exponential factor 

αϕ    constant learning rate decrement factor  

µϕ    constant momentum rate decrement factor 

maxα  upper bound on the learning rate 

maxµ  upper bound on the momentum rate 
 
The learning rate change, [k]α∆ , for EDBD is: 
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( )[k] ,if [k-1] [k] 0

[k] [k],if [k-1] [k] 0

0,otherwise

αγ δ
α

α

κ δ δ

α ϕ α δ δ

− >

∆ = − <







                         (2.6) 

 
The momentum rate change, [k]µ∆ , is: 
 

( )[ k ] ,if [k-1] [k] 0

[k] [k],if [k-1] [k] 0

0,otherwise

µγ δ
µ

µ

κ δ δ

µ ϕ µ δ δ

− >

∆ = − <







                          (2.7) 

 
The learning rate and momentum rate are adjusted based upon the results from equations 
(2.6) and (2.7).  In addition, [k-1] [k]δ δ  determines whether the modification will be an 
increase or decrease.  Finally, the conditions, [ ] maxkα α≤  and max[k]µ µ≤ , are imposed on this 
algorithm to limit excessive oscillations. These values are selected through trial and error to 
allow for accelerated convergence while preventing instability. 
 
A neural network must complete training, recall, and evaluation stages of development in 
order to perform accurately.  In the recall phase of development, the network is presented 
with an input and then is expected to produce the output.  In feedforward neural networks, 
the information is passed in a direct manner from the input layer to the hidden layer or layers 
and finally to the output layer.  Lastly, the network’s output should be compared to the 
desired output in order to evaluate the validity of the training.  If the network’s error cannot 
be attributed to intrinsic noise, then more training is required. The completion of the training 
cycle can be determined both graphically and computationally.  As the neural network 
continues to learn, its ability to match training set data will improve until the network begins 
to overfit the data. Memorization is evident on a plot when the neural network output 
matches stochastic data points rather than the underlying relationship.  Numerically, the 
network is learning as long as the correlation is increasing for the independent test set and 
decreasing for the training set.  When the correlation starts to decrease for the independent 
training set and increase for the training set, then the neural network is memorizing. 
Independent test data evaluates the network’s ability to gene ralize. It is crucial during the 
recall phase to present the neural network with data that it has not previously processed in its 
training cycle in order to evaluate its performance on conditions to which it has not 
previously been exposed.   
 
Neural networks are ideal for nonlinear robust controls because they possess two attributes.  
The first is pattern recognition.  Neural networks can determine a relationship without the 
need of a first principle explanation to relate all of the variables.  Essentially, neural networks 
apply the principle of induction while traditional controls fashion their relationships through 
the principle of deduction.  Secondly, fault tolerance is an extraordinary characteristic of 
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neural networks.  Traditional controllers fail when parts of their system are destroyed or 
disabled.  If various components of a neural network including the sensors are destroyed or 
disabled, the network will continue to function.  Although the network’s performance will 
degrade as more faulted information is presented, it will not immediately fail, as most 
traditional controllers are prone to do.  Consequently, neural networks are very applicable 
and practical control tools that have unexplored potential. 
 
 

2.3 Model Structure 
 
The Integrated Power System and proposed neural network based controller are distributed 
throughout the ship.  These system components are modeled as distinct, interconnected, 
lumped parameter subsystems.  The lumped parameter assumption models distributed 
elements using a finite number of ordinary differential equations. This formulation results in 
a coupled system of nonlinear, time varying differential equations.  Depending on the 
complexity of the mathematical relationships, and the number of variables in the system, the 
representation of system state can become very involved and difficult to solve.  The 
following four categories of state equations range from general, difficult to solve 
formulations to simplified linear models with straightforward solutions:  

 
C Implicit, Non- linear, Time-Varying: 
 
 f( (t), (t), (t),t) = 0x x u&   (2.8) 
 
C Explicit, Non- linear, Time Varying: 

 
 (t)=f( (t), (t),t)x x u&  (2.9) 
 
C Explicit, Linear, Time Varying: 

 
 (t)= (t) (t)+ (t) (t)x A x B u&  (2.10) 

 
C Explicit, Linear, Time Invariant: 
  
 (t)= (t)+ (t)x Ax Bu&  (2.11) 
 
In a lumped system, the system can be described by a finite number of state variables using 
one of the equations in (2.8) through (2.11).  The model of the system depends upon state 
space equations plus an output equation of the form: 
  
 = +y Cx Du  (2.12) 
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where u is the input vector,  x is the state variable vector, and y is the output vector.   
The C and D matrices map the state and input vectors to the output vector. 
 
In nonlinear control theory, researchers have made certain assumptions in order to make 
nonlinear systems tractable or to simplify the system from a state equation such as the one 
presented in equation (2.8) to an equation like the one presented in (2.11).  In equation (2.8), 
the relationships between the system state, x(t), the derivatives of the system state, ( )tx& , and 
the exogenous input, u(t), are implicit, nonlinear, and time varying.  Equation (2.9) describes 
an explicit formulation for ( )tx&  obtained through separation of algebraic and differential 
portions of equations.  The Integrated Power System Simulation, employed in this study, uses 
the equation (2.9) formulation.  This model is a variable structure, in the sense that the 
system configuration changes with time.  Equation (2.10) represents a state space model in 
terms of matrices A(t) and B(t) which are linear, but time varying.  Equation (2.11) 
represents the simplest of state space models, an explicit, linear, time invariant system.  For 
convenience, the preliminary investigation was performed using a simplified electric circuit 
in the form of equations (2.10) and (2.11). 
 
The attraction to simplify an implicit, nonlinear, time varying system to an explicit, linear, 
time invariant (LTI) system arises from the standard procedures common only to linear 
systems for determining controllability, observability, and stability.  Although these 
assumptions were successful in solving some nonlinear systems, they cannot be applied to all 
instances because of the complexity and unpredictability of nonlinear problems.   However, a 
neural network can and has been applied to explicit, nonlinear, time varying systems or those 
similar to equation (2.9) and been successful. [7] 
 
 

2.4 Prior Research 
 
Work in applying neural networks in practical control systems has been ongoing for many 
years.  In 1990, Roger Barron et al. presented a paper [11] at the National Aerospace 
Electronics Conference.  The foci of this paper are Fault, Detection, Isolation, and Estimation 
(FDIE) functions and Reconfigurable Flight Control.  FDIE functions are challenged by the 
inability to maintain complete observability during a multitude of casualty situations in an 
aircraft.  This large number of casualty situations presents many potential operational fault 
conditions.  In addition, the control issues involved in casualty cases are high order, time-
varying and nonlinear.  The control processes have multiple variables and cannot be fully 
observed.  Finally, there are undefined aero- inertial parameters and undefined 
aeroservoelastic characteristics especially in aircraft which are damaged.  A controller 
designed to handle these issues must be able to adapt to real time conditions and learn to deal 
with unforeseen conditions.  
 
Reconfigurable Flight Control demands adherence to four principles of reconfigurable 
control law.  First, estimated effector sensitivities should be used to adjust control law gains 
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via an explicit pseudo- inverse calculation.  Secondly, estimated effector sensitivities should 
be used to adjust control law gains via an implicit or neural network calculation.  Third, fixed 
and implicit (polynomial neural network) calculations should be used to infer control law 
gains independently of estimated effector sensitivities.  Finally, implicit, on-line adaptive 
(polynomial neural network) calculations should be used to command the control effectors.  
Barron et al. derived the Algorithm for Synthesis of Polynomial Networks – II (ASPN-II) for 
feedforward polynomial neural network in a supervised, offline environment.  These 
networks are composed of a linear combination of polynomial transfer functions.  An implicit 
model of data containing a maximum of 200 input and output pairs was used to train the 
neural network online.  Barron et al. concluded that polynomial neural networks are potential 
solutions to FDIE problems in reconfigurable flight systems since they responded by scoring 
a 94.4% probability of detecting and correctly isolating effector impairments exceeding 50% 
missing. [11] 
 
Roger Barron and Eugene Parker wrote a white paper [4] in 1993 concerning the 
applicability of neural networks to smart shipboard systems.   Barron and Parker address 
prediction, FDIE, and reconfiguration using neural networks in smart shipboard systems. 
Barron et al. compare neural network controllers to expert system controllers.   Hard 
thresholds do not limit neural networks in making decisions.  Neural networks can reduce the 
number of rules inherent in expert systems.  Neural networks utilize all pertinent observable 
data including parameter that may be unfamiliar to humans.  Neural networks can also 
receive data from various sources and organize it into a coherent control strategy.  Neural 
networks are faster than expert systems in gathering input data.  Neural networks can also 
predict future states of instability and recognize potential casualties.  
 
Barron et al. continue in their discussion to address fault detection and isolation (FDI) in 
Shipboard Electric Power Distribution Systems.  Barron’s polynomial neural network was 
used to control an SPD Technologies solid-state circuit breaker that can open high-current 
power circuits within a few microseconds.  This circuit breaker was able to protect power 
system components when certain fault classes instigated ten ampere/second current growth 
rates.  In this application, a polynomial neural network relying on its pattern recognition 
capability dramatically improved fault detection and identification.  This system has been 
experimentally validated for three-phase AC power protection under normal, bolted-fault, 
and arcing-fault conditions. [4]   
 
In 1995, Guglielmi et al. applied [3] neural networks to solving real fault detection and 
diagnostic problems in four heaters of a feedwater high-pressure line of a 320 MW power 
plant.  Their results show that neural networks can function in such an environment.  The 
neural networks used by Guglielmi et al. in this investigation were able to adequately 
diagnose the system with respect to steady-state operation.  Additionally, in transient modes 
of operation, one of their neural network designs performed very well in detecting and 
diagnosing faults.  
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Liu, Su, Tsay, and Wang [1] investigated the application of measuring phasors in order to 
predict better real- time transient stability swings.   They used specific Phasor Measurement 
Units (PMUs) to find the phasor measurements throughout the system.  Liu et al. showed that 
neural networks can predict the behavior of a system faster than the behavior can be 
computed analytically.  Since they used an eight cycle window of phasor measurements, the 
neural network was able to select the most pertinent data from an overdetermined set.  They 
used a combination of Supervised Decision Directed Learning and Backpropagation to train 
their network.  Liu et al. also used counterexamples of data to prevent the neural network 
from “memorizing” the relationships evident within the system.
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3 Technical Approach  
 
The advanced Integration Power System is essential to the design of DD-21, the next 
generation surface combatant.  Without this power system, the ship will not be able to 
employ the most sophisticated and state-of-the-art weapons, navigation, and propulsion 
systems.  These advanced systems and their solid-state components demonstrate non- linear 
behavior with respect to power consumption.  At the moment, no control system can 
effectively manage these components as well as complete the necessary tasks in the event of 
a casualty.  It is the objective of this project to develop a control system through the 
employment of feed-forward back propagating neural networks that will not only manage the 
advanced Integrated Power System, but also be ready to contend with the unexpected 
casualty. 
 
There are two fundamental issues that a controller must address in order to operate 
proficiently within the IPS environment.  The first of these issues is the variable structure of 
the power system.  As the ship conducts operations, the configuration of the electrical system 
and the electrical system’s loads will change.  This dynamic environment presents a unique 
challenge to a controller since there are multiple scenarios that it must consider.  The second 
fundamental issue is the fault tolerance of the controller.  The controller must be able to 
contend with both a complete sensor failure due to a casualty and degradation in the sensor 
data.  A competent controller will be able to cope with these two fundamental issues inherent 
to the Integrated Power System. 
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4 Preliminary Investigation 

4.1 Simulation Description 
 
As an important first step toward the ultimate goal of controlling an Integrated Power 
System, preliminary research was conducted on the simple circuit presented in figure 4-1. 

Capacitator       
(1x 10 -3 Farad)

Inductor 
(1 Henry)

Resistor 2 
(10 Ohms)

Resistor 1
(10 Ohms)

     E_a
(10 Volts)

i2 i3

  i1   e1

e2

 
Figure 4-1 Simple Circuit  

 
 
This simple circuit represents a second order initial value problem formulated in the state 
space equation (4.1). This circuit includes two resistors, a capacitor, an inductor, and a power 
source.     
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After developing the state-space equations necessary for this circuit, a MATLAB simulation 
was used to determine the values of three currents and two voltages.  To allow the neural 
network to estimate derivatives, each input record contained the current data augmented with 
shifted data.  Effectively, each input record contained present data and one time step previous 
data.  This 1z −  time shift operation was performed in MATLAB: 
 
 1[ ]aug z−=Y Y YM  (4.3) 
or equivalently: 
 
 ( ) [ ( ) ( )]augy n y n y n k= +M  (4.4) 
 
Equations (4.3) and (4.4) can be interpreted as augmenting the system response time series 
with the system response time series shifted by t∆ .   
 
MATLAB was used to generate the preliminary simulation results and to augment the results 
with time shifted data.  The MATLAB step command was used to determine the unit step 
response given equations (4.1), (4.2), and initial conditions of zero.  To generalize the results, 
the MATLAB lsim command was used to determine the response given arbitrary initial 
conditions.  The generalized, lsim based, simulation script and the MATLAB script to 
augment the simulation time series are enclosed in Appendix A. 
 
 

4.2 Transition from MATLAB to NeuralWare 
 
Although the initial neural network research was conduc ted using the MATLAB Neural 
Network Toolbox, it was necessary to change neural network environments in order to 
develop a more refined and flexible neural network.   
 



20  
MATLAB’s Neural Network Toolbox is limited in its ability to construct neural networks for 
this project: 
§ Absence of visualization capabilities 
§ Inability to connect and disconnect specific weights within the neural network  
§ Primitive mechanism for specifying the structure of the neural network  

Due to these limitations in MATLAB’s Neural Network Toolbox, it became necessary to 
adopt the NeuralWare Professional II/Plus software. 
 
NeuralWare is a more flexible program since it does allow for a connection between 
individual neurons in the input layer and individual neurons in the hidden layer.  This 
attribute of NeuralWare greatly enhanced the capability of the neural network.  NeuralWare 
also allows for the adjustment of each neuron’s transfer function and learning rule.  Thus, the 
ease with which one may operate NeuralWare as well as the visual representation available in 
NeuralWare make it a superior tool for developing neural networks when compared to 
MATLAB. 
 

4.3  Neural Network Design 
 
The neural network for this preliminary investigation is a feedforward backpropagating 
neural network.  Figure 4-2 presents the overall architecture of the neural network.  It has 
seven total layers:  one input layer, one output layer, and five hidden layers.  The input layer 
has ten processing elements or neurons in order to accept the five selected parameters of 1i ,  

2i ,  3i , 1e  and 2e  and the five time-shifted parameters of  1i ,  2i ,  3i , 1e  and 2e .  These ten 
processing elements used a linear transfer function and did not apply a learning rule.  A 
learning rule was not necessary for these neurons since their input did not pass through a 
previous neuron.  In other words, the data came directly from the sensors.  
 
The input layer neurons were then connected via weighted connections to the five hidden 
layers that applied the hyperbolic tangent transfer function and the EDBD learning rule.  All 
input neurons, except the neurons that contained the data to be estimated, were connected to 
the hidden layers.  This configuration was chosen to prohibit memorization and force the 
neural network to learn the relationship between the other eight parameters. Each hidden 
layer contained three processing elements.  Thus, the hidden layer responsible for estimating 

1i did not receive input from 1i .   
 
The three hidden layer neurons were then connected directly to the output layer neuron that 
was responsible for producing the parameter absent from the hidden layer.  The output layer 
connections also used a linear transfer function and the EDBD learning rule.  There were also 
connections that bypassed the hidden layer and directly connected input neurons to the 
appropriate output neurons.  Finally, a bias was connected to the hidden layer and output 
neurons.  
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Since neural networks have no intrinsic ability to model dynamic systems, it was necessary 
to augment the input with time-shifted data. These time-shifted data provided the neural 
network with a way to estimate derivatives using finite differences.  Entering the time-shifted 
data is necessary because the neural network is “memoryless”. Better results could have been 
obtained by explicitly providing the neural network derivatives.  Time shifted data was 
preferred over finite differences due to ease of implementation in real world scenarios.   



22  
 

 
Figure 4-2 Preliminary Neural Network Architecture  
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4.4 Training Data 
 

The neural network was trained on three data sets.  Initial training was conducted on 
sequential, individual data sets that had completely accurate data.  This training method did 
not sufficiently train the neural network because it over emphasized the most recent training 
set. To alleviate this problem, a single set of training data was constructed from individual 
simulation results.  This operation was performed by concatenating the individual training 
sets into a single, aggregated training set.  This change in training methods allowed the 
neural network to weigh all training data equally.  The neural network is unaware of the 
sequential nature of the data.  It randomly accesses the individual observations and each 
observation represents a strobe of system state at a particular instant of time.  
 
To achieve a fault tolerant neural network, the training set was modified to include sample 
sensor faults.  The sample faults included random variations and “drop outs.”  Random 
variations of 10%±  were imposed to simulate sensors that were degraded or out of 
calibration.  “Drop outs” are a complete loss of signal, representing a loss of sensing 
capability due to sensor failure of battle damage.  In essence, this procedure trained the 
neural network to be robust with respect to degraded sensor data.   The quantity of faulty data 
was limited to approximately 15% to minimize the adverse effects on network performance 
metrics.  During training, minimum summed squared error and other performance metrics 
guide the neural network to the generalized solution.  Increasing the proportion of faulty data 
would drive the generalized solution to represent fault conditions rather than normal 
conditions. 
 
The amount of faulted data in comparison to the accurate data was also a concern during 
training.  The percentage of faulted data should not be greater than the percentage of accurate 
data.  In reality, the percentage of faulted data should be between 10% and 30%.  The 
accurate data should also not be derived from the same initial conditions.  The neural 
network’s accuracy was greatly enhanced when varying initial conditions were used to 
produce accurate training data.    
 
At this point, the neural network was able to reproduce the transient response but was not a 
good predictor of initial conditions.   This poor performance is attributable to the fact that 
initial conditions represented only one out of 250 observations.  To achieve a balanced 
weighting of initial and transient response, the proportion of observations that represents 
initial, steady state data was increased.  This balancing was performed by extruding the initial 
conditions in time. This extrusion repeated steady state conditions over an initial period of 
time to increase the weight associated with initial conditions. 
 
 

4.5 Testing & Results 
 
After training the neural network, it was necessary to evaluate its performance.   
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The testing of the data was carried out by producing three sets of original test data.  The 
neural network was not exposed to this data at any point in its training cycle.  By keeping the 
test data separate from training data, the neural network was not given the opportunity to 
recite memorized data.  Instead, this separation allowed for the critical evaluation of the 
relationship that the neural network had established to model the system.   Thus, the test set 
was completely foreign to the neural network and provided an accurate measurement of the 
neural network’s performance. 
 
The neural network’s best performance was produced after having trained for 10,000 epochs 
on a combined data set of 10,500 points including varying initial conditions, data drop outs, 
and ten percent error data.  One epoch represents a single pass through the training data set.  
As shown below, the results of testing that included missing data were very good. 
 

 
Figure 4-3 Preliminary Neural Network Response to Missing Data 

 
In this plot, the parameter, e1 and e1’s time shifted data were replaced with all zeros to 
simulate a sensor failure.  In this scenario, the network was able to compensate accurately for 
the lack of e1 data with respect to predicting e1. However, since the e1 data have a strong 
relationship to e2, the neural network was not able to predict e2 exactly.  The zero columns 
of e1 and e2 have a much more dramatic effect on the other parameters in this neural network 
since there are only 10 total parameters.  Having considered this effect, the results shown in 
this plot are even more impressive. 
 
Comparatively, when the network was tested on data that had a ten percent input error, the 
neural network performed well again.  In Figure 4-3, one can see that every 40 data points, 
there is a slight shift in the network’s prediction.  Due to the alternating between parameters 
of the missing data, the network is able to maintain accurate predictions and handle a sensor 
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fault in any parameter.  Additional sensors would further mitigate the adverse effect of a loss 
of sensors. 
 

 
Figure 4-4 Preliminary Neural Network Response to Degraded Data  

 
These positive results paved the way for investigation of the Integrated Power System. 
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5 Investigation of IPS Reference Model 

5.1 Description of the Integrated Power System Simulation 
 

The Integrated Power System DC Zonal Electrical Distribution System or IPS DC ZEDS is a 
vital component of the DD-21, next generation surface combatant project.  This power 
system provides the necessary power generation, distribution, and conditioning to support the 
advanced weapons, navigation, and operating systems required by the mandates for DD-21.  
  
The IPS simulation used in this project is a subset of the ent ire IPS system.  It is complete in 
the sense that it models the necessary components, connections, and architecture that are 
present in the total system.  S. F. Glover, B. T. Kuhn, and S. D. Sudhoff of Purdue University 
developed this IPS simulation under Office of Naval Research funding. [12] 
 
The Naval Sea System Integrated Power System (IPS) and Office of Naval Research 
Electrically Reconfigurable Ship (ERS) provide advanced power distribution systems that 
can reroute power around damage and maintain power continuity to vital loads.    
 
As shown in Figure 5-1, these solid state power electronic modules include [12]: 

• Power generation module composed of a Prime Mover (PM), Synchronous Machine 
(SM), and voltage regulator 

• Power Conversion Modules (PCMs) 
• Ships Service Converter Modules (SSCMs)   
• Propulsion Motor Module (PMM). 

All of these components are interconnected for improved flexibility and survivability. 
 
A 19 mega-Watt synchronous generator powers the IPS reference model.  This 4160 Volt AC 
Bus 1 distributes power to propulsion and redundant ships service supply busses.   Electric 
propulsion power is converted to mechanical power via a 19 mega-Watt induction motor and 
drive system.  Simultaneously, the Ship Service Power Supply (SSPS) converts AC Bus 1 
power to 1100V DC for port and starboard distribution.  Port and starboard Ship Service 
Converter Modules (SSCMs) convert the 1100V distribution power to DC to 900V and 860V 
DC.  Auctioneering diodes draw power from whichever bus has the highest voltage potential.  
This feature allows bumpless transfer from the primary to the secondary supply bus.  AC 
loads are served via Ship Service Converter Modules (SSCMs), producing 440V AC power.  
Finally, large DC loads are directly connected to the port and starboard DC busses via 
auctioneering diodes.   
 
Glover et al. modeled this system through the use of the Advanced Continuous Simulation 
Language (ACSL).  It is a computer simulation that accurately represents the behavior of the 
system.  First, system components were modeled through a series of differential equations.  
These equations were then combined to produce a mathematical model of the system.  
Glover et al. then wrote a computer simulation program in the ACSL language based on this 
mathematical model. [12] 
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Figure 5-1 IPS Reference Model 

 
 

5.2  IPS Simulations 
  
The Integrated Power System reference model, developed by the Energy Systems Analysis 
Consortium (ESAC) was modified for this investigation [13].  All AC three phase voltages 
and currents were converted to RMS magnitudes. Run time scripts were composed to 
configure the system in eight distinct operating alignments. Once steady state operation was 
achieved, each run consisted of a single transient event.  This single event was the activation 
of the induction motor attached to DC Buses 3 and 4 (commonly referred to as the “motor”).  
These runs of different configurations lasted 10 seconds and had a sample rate of 100 Hz.    
A total of eight runs were completed and logged.  The initial settings for each run included 
energizing the Exciter/Voltage Regulator, the Prime Mover, the Synchronous Machine, AC 
Bus 1, and the AC to DC Converter, while connecting DC Bus 1 to DC Bus 3 and DC Bus 2 
to DC Bus 4.  The Propulsion Drive remained off.  These two components were disconnected 
because their reaction to change in the power system was at least an order of magnitude 
slower.  Consequently, their behavior would have minimal effect on the first 10 seconds of 
the motor start. While each run deviated from these initial settings in its configuration, the 
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same twenty parameters were observed during each run.  The following table names these 
parameters and briefly describes them: 
 

Table 5-1 IPS ACSL Simulation Variable Names 
Voltages Description Currents Description 

vmagb1 AC Bus 1 Voltage imagserv Ships Service Load Current 

vmagb3 AC Bus 3 Voltage imagb3 AC Bus 3 Current 
Vbus1 DC Bus 1 Voltage ibus1 DC Bus 1 Current 
Vbus2 DC Bus 2 Voltage ibus2 DC Bus 2 Current 
Vbus3 DC Bus 3 Voltage ibus3 DC Bus 3 Current 
Vbus4 DC Bus 4 Voltage ibus4 DC Bus 4 Current 

voutsscm3b Voltage from DC Bus 3 to Diode Bridge ibus1load DC Bus 1 Load Current 
voutsscm4b Voltage from DC Bus 4 to Diode Bridge ibus2load DC Bus 2 Load Current 

Vdc34b Voltage out of Auctioneering Diodes ioutsscm3b 
Current from Bus 3 to Diode 

Bridge 

  
ioutsscm4b 

Current from Bus 4 to Diode       
Bridge 

  idc34b 
Current out of Auctioneering 

Diodes 
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5.3 Configurations 
 
This section deals exclusively with the configurations used to train and test the neural 
networks. Quantitative and qualitative results are presented in subsequent chapters. 

5.3.1 Initial Configuration 
Prior to commencing any simulations, all power components were disconnected.  However, 
the DC Buses remained connected.  Then, before every run, each component was energized 
from this initial configuration.  
 
 

 
Figure 5-2 Initial Configuration  
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5.3.2 Run 1 Configuration 
Run 1’s configuration included an energized DC Bus 1 and DC Bus 3 with an active DC load 
on DC Bus 3. DC Buses 2 and 4 were disconnected.   
 
 

 
Figure 5-3 Run 1 Configuration  
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5.3.3 Run 2 Configuration 
In the configuration for run 2, DC Buses 1 and 3 were disconnected while DC Buses 2 and 4 
remained active with a resistive DC load on DC Bus 4.  
 
 

 
Figure 5-4 Run 2 Configuration  
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5.3.4 Run 3 Configuration 
Run 3 was similar to Run 2, but it added the Ships Service Inverter Module to DC Bus 2 that 
energized AC Bus 3.  
 
 

 
Figure 5-5 Run 3 Configuration  
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5.3.5 Run 4 Configuration 
Run 4 built on the Run 3 configuration by adding DC Bus 1 to the Ships Service Inverter 
Module.  However, DC Bus 4 remained connected.  
 
 

 
Figure 5-6 Run 4 Configuration  
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5.3.6 Run 5 Configuration 
The configuration for Run 5 included energizing DC Buses 1, 2, 3, and 4.  AC Bus 3 was 
also energized and connected to both DC Buses 1 and 2.  However, DC Bus 3 was not 
connected to the motor.  
 
 

 
Figure 5-7 Run 5 Configuration 
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5.3.7 Run 6 Configuration 
All of the DC Buses and AC Bus 3 were energized and connected.  Run 6 is the complete 
power system operating.  
 
 

 
Figure 5-8 Run 6 Configuration  
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5.3.8 Run 7 Configuration 
DC Bus 4 was disconnected from DC Bus 2 for Run 7.  However, the rest of the system 
remained connected and energized.  
 
 

 
Figure 5-9 Run 7 Configuration  
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5.3.9 Run 8 Configuration 
In this final run, DC Buses 2 and 4 were disconnected while DC Buses 1 and 3 remained 
energized.  AC Bus 3 was still connected to DC Bus 1. 
 
 

 
Figure 5-10 Run 8 Configuration  

 
The IPS Simulation Code and the command file to exercise the simulation are found in 
Appendices B and C, respectively. 



38  

6 Variable Structure Control of IPS 
  
It is necessary for the IPS controller to contend with a varying physical structure within the 
power system. An adept controller will have to adapt to such modifications in the power 
system with ease.  During this investigation, three different neural network architectures were 
evaluated.  At first, these networks were trained on millions of passes.  Testing on 
independent data indicated the neural network’s tendency to memorize the data instead of 
generalizing.  When this memorization occurred, the performance of the neural network 
rapidly diminished.  Consequently, the training of these variable structure networks was 
repeated using a reduced number of passes.  This training strategy limited the memorization 
of the data by the neural networks and increased their robustness.  The following sections 
present each neural network and provide graphical results.  Quantitative and summary results 
are reported after discussion of individual neural network structures and results. 
 

6.1 38-1 Variable Structure Neural Network 
 

As shown in Figure 6-1, the 38-1 neural network has a 38 neuron input layer, a ten neuron 
hidden layer, and a single neuron output layer.  The hidden layer uses a hyperbolic tangent 
transfer function.  The network was trained using the Extended Delta-Bar-Delta (EDBD) 
learning rule.  The 38 neuron input layer accepted data from 19 of the 20 parameters and 
their time-shifted equivalents.  The auctioneering diode output, idc34b, is the current 
supplied to the motor during the start sequence.  This network trained for 10,000 passes on 
runs 2, 3, 4, 6, 7, and 8.  It was then tested on runs 1 (Figure 6-2) and 5 (Figure 6-3) without 
ever having trained on such configurations.  Given the difficulty of modeling variable 
structure systems, the results exceed our expectations.   Both runs very closely approximate 
the expected values, testifying to the robustness of the neural network.   
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Figure 6-1 Neural Network with 38-1 Architecture 
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Figure 6-2 Run 1 Current Prediction with 38-1 Architecture 

 
Figure 6-3 Run 5 Current Prediction with 38-1 Architecture 
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6.2 36-2 Variable Structure Neural Network 
 
The 36-2 neural network, discussed in this section and illustrated in Figure 6-4, represents the 
next logical progression in predictive capability.  This network uses all inputs except vdc34b 
and idc34b to predict both vdc34b and idc34b.  As before, auctioneering diode output, idc34b 
and vdc34 represent the current and voltage supplied to the motor during the start sequence.  
The 36-2 nomenclature indicates 18 inputs plus 18 time shifted inputs and two outputs.  The 
hyperbolic tangent transfer function was retained for hidden layers and once again, EDBD 
was the learning rule.   

 
The 36-2 neural network was tested on runs 1 and 5 after having trained for 7,500 passes 
exclusively on runs 2, 3, 4, 6, 7, and 8.  This network was not expected to provide accurate 
estimates for configurations that it had not seen during training.  Nevertheless, Figures 6-5 
and 6-6 indicate motor startup current predictions that are almost as good as the 38-1 case.  
The small offsets between actual and predicted results are due to the variable structure of the 
system.  This observation is strengthened by examining the voltage predictions.  Note that the 
predicted voltage for test scenarios 1 and 5 are identical, indicating that the neural network is 
unaware of the change in system configuration. The 36-2 network again demonstrated the 
robustness of neural networks in estimating idc34b and vdc34b effectively with minimal 
input information. 
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Figure 6-4 Neural Network with 36-2 Architecture 
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Figure 6-5 Run 1 Current Prediction with 36-2 Structure 

 
Figure 6-6 Run 5 Current Prediction with 36-2 Structure 
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6.3 40-20 Variable Structure Neural Network 
 
To complete the variable structure studies, a 40- input 20-output (40-20) neural network was 
constructed.  The 40-20 network is essentially twenty 38-1 networks acting in parallel.  Since 
the 40-20 interconnections are very complex, Figure 6-7 displays a simplified schematic of 
the neural network.  Each output estimates one of the twenty parameters that were observed 
in the simulations.  To prevent memorization, each output is not connected to its own input or 
time-shifted input.  Consequently, the neural network determines the output based upon the 
other 38 inputs.  These 38 inputs are sent to a hidden layer that is directly connected to the 
corresponding single output neuron.  In this network, the hidden layers all use the hyperbolic 
tangent transfer functions and apply the EDBD learning rule.  This neural network is an 
attempt to extend the robustness of the 38-1 Variable Structure Neural Network into a 
controller that can determine all twenty system parameters. 
 
The results for the 40-20 neural network are very good.  However, as the neural network is 
trained on multiple output parameters, it tends to generalize.  These generalizations limit the 
correlation of the 40-20 neural network as compared to the 38-1 neural network since all 
twenty output parameters in the 40-20 were weighted equally while the 38-1 network was 
solely concerned with idc34b.  
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Figure 6-7 Neural Network: 40-20 Architecture 
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Figure 6-8 Run 1 Current & Voltage Prediction with 40-20 Architecture 

 
Figure 6-9 Run 5 Current & Voltage Prediction with 40-20 Architecture 
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7 Fault Tolerant Control of an IPS 
 
A capable controller for the IPS must be fault tolerant.  The controller cannot be so brittle 
that if sensor data degrades or is completely absent, it will fail.  In order to address this 
concern, two fault tolerant neural networks were designed, developed, and tested.   
 
 

7.1 38-1 Fault Tolerant Neural Network 
 
The 38-1 neural network, diagrammed in Figure 7-1, has 38 input layer neurons that accept 
all of the parameters and their time-shifted equivalents except idc34b and its time-shifted 
equivalent. The variable idc34b was selected as the output since it is the current associated 
with the motor start sequence.  The hidden layer contains ten neurons with hyperbolic 
tangent transfer functions.    
  
The neural network was trained on perfect data from all eight runs for a total of 1,000 passes.  
It was then tested on a set of degraded data that originated from run 6.  Run 6 data was 
processed by the MATLAB filter included in Appendix E which randomly inserted errors 
ranging from –10% to 10%.  Then, columns of zeros were inserted into the file to simulate 
sensor failure.  These zeros were inserted in both the parameter and its time shifted 
equivalent at the same time so that the data was consistent.  The neural network was then 
tested on this set of degraded data.  Since the original eight runs had established a very brittle 
neural network, it was unable to perform at an acceptable level during this test.  Figure 7-2 
displays the neural network’s poor performance as was expected since the neural network 
had not yet been trained on inaccurate data.  The weights obtained from the perfect data were 
used as initial weight values for data degradation training. The neural network was trained on 
degraded data from run 6 for 3,500 passes.   
 
As shown in Figure 7-3, the neural network’s performance was greatly enhanced and was 
able to handle both degraded data faults and sensor failure faults.  There are two groups of 
data points clustered at 8 seconds and 10 seconds in Figure 7-3 that depart significantly from 
the actual values.  These departures show the neural network’s ability to partially compensate 
for sensor failure.  With additional training on corrupted data, the neural network could learn 
to minimize the sensitivity to sensor failure thereby enhancing robustness. 
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Figure 7-1 Neural Network with 38-1 Architecture 
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Figure 7-2 Initial Fault Tolerant Prediction with 38-1 Architecture 

 
Figure 7-3 Improved Fault Tolerant Prediction with 38-1 Architecture 
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7.2 40-20 Fault Tolerant Neural Network 
 
The 40 input and 20 output fault tolerant neural network is the culmination of this research.  
The primary goal of this project was to construct neural networks that could model nonlinear 
dynamics and be robust with respect to faulted data.  This neural network is essentially 
twenty 38-1 neural networks combined to form one “super” neural network.  Once again, the 
hidden layers are composed of hyperbolic tangent functions.  Each output is a linear 
combination of the independent inputs and a dedicated hidden layer.  Likewise, the hidden 
layer is connected to 38 input neurons excluding those that are directly related to the output.  
In order to show this neural network in the least confusing manner possible, the connections 
have been hidden in the Figure 7-4. 
 
This network was trained in much the same way as the 38-1 Fault Tolerant Neural Network.  
It trained for 5 million passes on completely accurate data from all eight runs.  As with the 
38-1 neural network, a “naïve” 40-20 neural network that was not trained on faulted data 
could not predict faulted run 6 data.  As before, training was continued using the degraded 
data developed for the 38-1 fault tolerant investigation.  Due to the complexity of the 40-20 
network, a total of 10 million passes was performed without over training.   Figure 7-5 
clearly demonstrates the ability of the 40-20 neural network to generate accurate estimates in 
spite of significant data degradation.  The departures in Figure 7-5 are much smaller than 
those observed in Figure 7-3.  The generalization of the 40-20 neural network decreased its 
sensitivity to sensor failure as compared to the 38-1 neural network in Figure 7-3.  More 
detailed results are provided in Appendix H. 

 
 



51  

 
Figure 7-4 Neural Network with 40-20 Architecture 
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Figure 7-5 Fault Tolerant Prediction with 40-20 Architecture 
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8 Quantitative Analysis 
 
It is just as important to measure the performance of the neural networks quantitatively 
(Table 8-1) as it is to demonstrate their performance graphically.  Consequently, two types of 
calculations were applied to quantify the results:  correlation and accuracy.   
 
 

8.1 Correlation 
 
Correlation measures the similarity of trends in two sets of data.  If two sets of data are 
similar with respect to their slopes, they will have a correlation approaching 1.  Their 
correlation will also be high even if there is a large bias separating the two sets of data.  If 
two sets of data do not coincide with respect to their trends, then they will have a correlation 
approaching 0.  Essentially, correlation measures the ability of the neural network to produce 
output data that tracks the trends of the desired output data without regard to scale.  
Therefore, correlation is not a useful metric for constant parameters.  
 
 

8.2 Accuracy 
 
For those sets of data that are constant or nearly constant, i.e. most voltage measurements in 
this research, an accuracy measurement was calculated using equation (8.1): 
  
 

                           
desired predicted

nominal

accuracy 1
x x

x

−
= −      (8.1) 

 
This calculation included averaging the two sets of data, including the desired output and the 
predicted output, to be compared.  Then, the absolute value of the difference between these 
two averages was taken and divided by a nominal value.  This quantity was then subtracted 
from 1 to produce a measurement of accuracy.  A value approaching 1 is very accurate while 
a value close to 0 is inaccurate.  The nominal value for each parameter was selected from the 
design of the simulation.  For bus vo ltages, the nominal value was the regulated voltage.  For 
currents, a nominal value of 250 amperes was used.  
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8.3 Results 
 
As one can deduce from these values in Table 8-1, the neural network was successful in 
predicting both transient and steady state responses.  It should be noted that the 40-20 
Variable Structure neural network failed to accurately predict vbus1 in run 1 and vbus2 and 
voutsscm3b in run 5.  The neural network’s poor performance with respect to these three 
parameters is a result of its lack of exposure to configurations in training that would have 
prepared it to predict these values.  These results emphasize the importance of correctly 
training a neural network on multiple scenarios. 
 
In transitioning from a simulation of the Integrated Power System to an operational 
Integrated Power System, the neural network’s performance would be expected to improve.  
The greater amount of generalization necessary to observe an operational IPS would increase 
the neural network’s robustness.  An increase in sensors would also enhance the neural 
network’s robustness.  Finally, the computational expediency of the neural network would 
aid its performance in an operational Integrated Power System.
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Table 8-1 Correlation & Accuracy Values 
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9 Summary 

9.1 Synopsis 
 
Neural network control of the Integrated Power System was researched, investigated, and 
evaluated from two distinct perspectives.  The variable structure neural network was trained 
on six different power system configurations and evaluated using two additional, independent 
configurations.  The training set was intentionally incomplete.  This incompleteness was 
desired in order to fully assess the neural network’s ability to analyze variable structure 
configurations.  Despite the absence of prior training, the neural network accurately predicted 
the dynamics of the independent test configurations.  The three isolated prediction failures 
are directly traceable to the absence of relevant training data. This result emphasizes the 
requirement for a complete training set.  Subsequently, sensor degradation and failure were 
introduced in addition to the variable structure.  The neural network continued to predict 
parameter values accurately.   
 
 

9.2 Conclusions 
 
The neural network did an excellent job of predicting uncertain power system parameters in a 
variable structure system subjected to degraded sensor data.  The isolated estimation failures 
demonstrate that the training data must represent all possible system configurations.  Given 
these very promising results, neural networks appear to have a great potential to aid in the 
fault tolerant control of complex, interactive systems such as the IPS.  
 
 

9.3 Recommendations 
 
In order to apply these promising results confidently to complex, interactive systems, 
additional research should be conducted in the following areas: 
 
§ Unexpected transients such as power system faults 
§ Quantification of fault tolerance  
§ Optimization of neural network structure, learning rules, and training 
§ Adding feedback structures to the neural network architecture 
§ Synthesize a hybrid control strategy where neural networks complement other 

control technologies 
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9.4 Closure 
 
This research has produced exciting results that validate the premise that neural networks can 
be reliable, fault tolerant estimators of uncertain, complex, variable structure systems. 
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12 Appendices 

12.1  Appendix A – Preliminary Simulation MATLAB Code 
 
% Preliminary Investigation - Simulation Data for Neural Network 
% Single Matrix Output with Shifted Data [y1 y2] 
% 27 MAR 00 
 
clear; 
 
%Define Lumped Parameters 
ea = 10; 
C1 = 1e-3; 
L1 = 1; 
R1 = 10; 
R2 = 10; 
 
%Derive the State-Space Matrix 
A  = [-1/(R1*C1) -1/C1;1/L1 -R2/L1]; 
B  = [1/(C1*R1);0]; 
C  = [ea 0;0 ea;-ea/R1 -ea; ea -ea*R2;-ea/R1 0]; 
D  = [0;0;ea/R1;0;ea/R1]; 
sys = ss(A,B,C,D); 
t=0:.001:.25; 
U = ones(length(t),1); 
XO=[0 0]'; 
[y,ts] = lsim(sys,U,t,XO); 
 
% Single Matrix Output y 
e1 = y(:,1); 
i3 = y(:,2); 
i2 = y(:,3); 
e2 = y(:,4);                 
    
i1=  y(:,5); 
 
% Shifted Matrix Output y_a  
y1=y(1:length(y)-1,:); 
y2=y(2:length(y),:); 
y_a=[y1 y2]; 
 
%Plot simulation 
clf 
[ax1,h1,h2] = plotyy(t,i1,t,e1); 
set(h1,'LineStyle','o') 
set(h2,'LineStyle','-') 
set(h2,'Marker','.') 
set(h1,'Color','k') 
set(h2,'Color','k') 
title('Simulation Data for Neural Network') 
xlabel('Time, sec.') 
axes(ax1(1)); 
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axis([0 max(t), -0.2 1]) 
ylabel('Current, A') 
grid; hold on 
plot(t,i2,'k+') 
plot(t,i3,'kdiamond') 
legend('i1','i2','i3',0) 
axes(ax1(2)); 
axis([0 max(t), -2 10]) 
set(h2,'LineStyle','-.') 
ylabel('Voltage, V') 
  
grid; hold 
plot(t,e2,'k:') 
legend('e1','e2',4) 
 
%Faulty Data 
z=zeros(size(e1)); 
save sim1dat; 
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12.2  Appendix B – IPS ACSL Code 
 
!---------------------------------------------------------------------! 
!                                                                     ! 
! Authors:   S.F. Glover, B.T. Kuhn, S.D. Sudhoff                     ! 
!            Purdue University                                        ! 
!            Department of Electrical and Computer Engineering        ! 
!            1285 Electrical Engineering Building                     ! 
!            West Lafayette, IN 47907                                 ! 
!            (765)-494-3246                                           ! 
! For:       Roger A. Dougal                                          ! 
!            University of South Carolina                             ! 
!            Department of Electrical and Computer Engineering        ! 
!            Columbia, South Carolina  29208                          ! 
!            Award # 97-364 - Modeling and Translator Development     ! 
! Date:      4/16/99                                                  ! 
! Version:   2.0                                                      ! 
!                                                                     ! 
! Modified:  E.L. Zivi for 1/C Cerrito Trident Research 3/27/00       ! 
!                                                                     ! 
!---------------------------------------------------------------------! 
 
INCLUDE 'macros/asscm.mac' 
INCLUDE 'macros/diobravm.mac' 
INCLUDE 'macros/mc.mac' 
INCLUDE 'macros/dcresld.mac' 
INCLUDE 'macros/inductqd.mac' 
INCLUDE 'macros/rotor.mac' 
INCLUDE 'macros/speedld.mac' 
INCLUDE 'macros/dctxline.mac' 
INCLUDE 'macros/assim.mac' 
INCLUDE 'macros/apwsp.mac' 
INCLUDE 'macros/revtrans.mac' 
INCLUDE 'macros/srf.mac' 
INCLUDE 'macros/aexciter.mac' 
INCLUDE 'macros/asmsat.mac' 
INCLUDE 'macros/aacbus.mac' 
INCLUDE 'macros/pmm8.mac' 
 
PROGRAM scsystem 
 
   DYNAMIC 
 
      ALGORITHM IALG=2 
      MAXTERVAL MAXT=1.0e-4 
      MINTERVAL MINT=1.0e-20 
      CINTERVAL CINT = 1.0e-3 
      CONSTANT TSTOP = 1.0 
 VARIABLE T,TIC=0.0 
      TERMT(t .GE. tstop-0.5*cint,'Exit on Tstop') 
 
      DERIVATIVE main 
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   !----------AC GENERATION----------------------------------------! 
 
      !Turbine 
       CONSTANT wrsm=377.0 
       CONSTANT we=377.0 
       SRF(1,we,qe) 
 
      !Synchronous Machine IEEE Type 2 Excitation System" 
       AEXCITER(ex,vqdsesm, vfd, & 
                   "vrefex=4160.0","vfdicex=22.1354", & 
                   "trex=1.05e-3","kaex=380.0","taex=0.019", & 
                   "vrminex=0.0","vrmaxex=7.3", & 
                   "kfex=31.5e-3","tf1ex=0.95","tf2ex=0.96", & 
                   "keex=0.95","teex=0.84", & 
                   "se100ex=0.903","se75ex=0.525", & 
                   "vbsmex=2.52e3","vfdbsmex=28.77") 
 
      !Salient Synchronous Machine With 1 Damper" 
       ASMSAT(sm,vqde1,we,vfd,wrsm,cbsm,vqdsesm, & 
                 iqdesm,ifda1,tesm, &  
                 "vfdicsm=22.1354","delta0sm=0.0", & 
                 "rssm=1.399e-3","llssm=372.115e-6", & 
                 "lmqsm=2.769e-3", & 
                 "llkqsm=141.66e-6","rkqsm=5.80e-3", & 
                 "llkdsm=72.05e-6", "rkdsm=5.08e-3", & 
                 "llfdsm=236.392e-6", "rfdsm=470.34e-6", & 
                 "nsfdsm=6.328e-2","npsm=2.0", & 
                 "masm=21899.65","mdsm=21585.83", & 
                 "tautsm=7.396","lamtsm=11.01","ithreshsm=1.0e7") 
 
 
   !----------AC Bus 1----------------------------------------------! 
 
      ! Bus Voltage Magnitude 
        CONSTANT root3o2=1.2247 
        vmagb1 = SQRT(vqde1(1)**2 + vqde1(2)**2)*root3o2 
 
        PROCEDURAL(imagb1, imagprop, imagserv = iqdesm, iqimprop, & 
                                                idimprop, iqdepwsp) 
      ! Bus 1 Generator Supply Current Magnitude 
        imagb1 = SQRT(iqdesm(1)**2 + iqdesm(2)**2)*root3o2 
      ! Bus 1 Propulsion Load Current Magnitude 
        imagprop = SQRT(iqimprop**2 + idimprop**2)*root3o2 
      ! Bus 1 Ships Service Load Current Magnitude 
        imagserv = SQRT(iqdepwsp(1)**2 + iqdepwsp(2)**2)*root3o2 
        END !procedural 
 
      ! Calculate the bus voltage, - rbus is about 10 pu 
        AACBUS(bs, iqdebc1, vqde1, & 
                 "rbs=2.622","tau1bs=1.0e-6","tau2bs=1.0e-4") 
        PROCEDURAL(iqdebc1 = iqdesm,iqdepwsp,iqdemcprop) 
          SUM(iqdebc1 = iqdesm,iqdepwsp,iqdemcprop) 
        END !procedural 
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   !---------PROPULSION SYSTEM-------------------------------------! 
  
      ! Propulsion controller 
        PMM8(mcprop,opmcprop,vqde1,we,iqimprop,idimprop, & 
                     wrmimprop,wrmstarprop, & 
                     vqimprop,vdimprop,weimprop,iqdemcprop, & 
                     "cdcmcprop=0.2","taumcprop=0.1", & 
                     "rsmcprop=8.83e-3","Lssmcprop=10.073e-3", & 
                     "wbemcprop=30.02","vlinkicmcprop=0.0", & 
                     "vlinkminmcprop=4250.0", & 
                     "accllmcprop=-0.1241","acculmcprop=0.1241", & 
                     "npmcprop=4.0","kpmcprop=1.0", & 
                     "kimcprop=1.0","vsmaxmcprop=3396.6", & 
                     "ramptmcprop=10.0", & 
                     "lacmcprop=6.786e-6","rlcmcprop=0.0", & 
                     "vscrmcprop=0.0","ldcmcprop=3.0e-3", & 
                     "rdcmcprop=6.786e-3") 
 
      ! 19MW induction motor 
        INDUCTQD(improp, vqimprop,vdimprop,weimprop,wrmimprop, & 
                        iqimprop,idimprop,teimprop, & 
                        "rsimprop=8.83e-3","Llsimprop=173.1e-6", & 
                        "Lmimprop=9.9e-3","rrpimprop=63.5e-3", & 
                        "Llrpimprop=173.1e-6","nPimprop=4.0", & 
                        "lamdsicimprop=0.0","lamdrpicimprop=0.0") 
        ROTOR(improp, teimprop,tlimprop, wrmimprop, & 
                     "Jimprop=3.698e6","wrmicimprop=0.0") 
        SPEEDLD(improp, wrmimprop, tlimprop, & 
                       "wrmbaserpmimprop=148.1","tlbaseimprop=1.23e6") 
 
 
   !---------DC POWER SUPPLY-------------------------------------! 
 
      CONSTANT vrefpwsp= 1100.0 
      CONSTANT odflagpwsp = .TRUE. 
      CONSTANT cnntpwsp1 = .TRUE. 
      CONSTANT cnntpwsp2 = .TRUE. 
      INITIAL 
         cbpwsp = .TRUE. 
         oppwsp =. FALSE. 
      END !initial 
      APWSP(pwsp, oppwsp,cbpwsp,odflagpwsp,cnntpwsp1, & 
            cnntpwsp2,vrefpwsp,vqde1, & 
            vbus1,vbus2,we,qe, itranpwsp1,itranpwsp2,iqdepwsp, & 
            "rppwsp=52.06e-3","llppwsp=2.07e-3", & 
            "rspwsp=.069","llspwsp=7.61e-3","npwsp=9.8", & 
            "vscrpwsp=0.0","ldcpwsp=128.0e-6", & 
            "rdcpwsp=0.19e-3","cdcpwsp=17.6e-3", & 
            "kpvpwsp=0.011","kivpwsp=22.0","limvpwsp=10000.0", & 
            "ilimitpwsp=10000.0","kpipwsp=0.012","kiipwsp=0.0", & 
            "limipwsp=0.0","alphaminpwsp=0.0", & 
            "alphamaxpwsp=3.14","vmaxpwsp=1175.0", & 
            "taufltpwsp=4.364e-3","dismodepwsp=.FALSE.", & 
            "ithreshpwsp=1.0e7","L1txpwsp=10.0e-6", & 
            "r1txpwsp=0.01","L2txpwsp=10.0e-6","r2txpwsp=0.01") 
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   !---------DC BUS 1-------------------------------------! 
 
      !calculate bus voltage 
      pvbus1 = (itranpwsp1 - itran13 - ilinsscm1a)/Cinsscm1a 
      vbus1 = INTEG(pvbus1, 0.0) 
 
      PROCEDURAL(ibus1, ibusload = itranpwsp1, ioutsscm1a) 
 ibus1 = itranpwsp1 
 ibus1load = ioutsscm1a 
 END ! Procedural 
 
 
      !sscm1a 
      ASSCM(sscm1a, opsscm1a,vbus1,ioutsscm1a, & 
                    ilinsscm1a,Cinsscm1a,voutsscm1a, & 
                    "vinstarsscm1a=1100.0","vrefsscm1a=900.0", & 
                    "Cin1sscm1a=500.0e-6","Cin2sscm1a=100.0e-6", & 
                    "Coutsscm1a=1.0e-3","Linsscm1a=70.0e-6", & 
                    "Loutsscm1a=100.0e-6","kpsscm1a=2.0e-3", & 
                    "kisscm1a=0.7","fswsscm1a=20.0e3", & 
                    "tausscm1a=7.96e-6","vswsscm1a=1.0", & 
                    "vdiodesscm1a=1.0","RLinsscm1a=0.01", & 
                    "RLoutsscm1a=0.02","RCoutsscm1a=1.0", & 
                    "trampsscm1a=30.0e-3") 
 
 
   !---------DC BUS 2-------------------------------------! 
 
      !calculate bus voltage 
      pvbus2 = (itranpwsp2 - itran24 - ilinsscm2a)/Cinsscm2a 
      vbus2 = INTEG(pvbus2, 0.0) 
 
      PROCEDURAL(ibus2, ibus2load = itranpwsp2, ioutsscm2a) 
 ibus2 = itranpwsp2 
 ibus2load = ioutsscm2a 
 END ! Procedural 
 
 
      !sscm2a 
      ASSCM(sscm2a, opsscm2a,vbus2,ioutsscm2a,  & 
                    ilinsscm2a,Cinsscm2a,voutsscm2a, & 
                    "vinstarsscm2a=1100.0","vrefsscm2a=860.0", & 
                    "Cin1sscm2a=500.0e-6","Cin2sscm2a=100.0e-6", & 
                    "Coutsscm2a=1.0e-3","Linsscm2a=70.0e-6", & 
                    "Loutsscm2a=100.0e-6","kpsscm2a=2.0e-3", & 
                    "kisscm2a=0.7","fswsscm2a=20.0e3", & 
                    "tausscm2a=7.96e-6","vswsscm2a=1.0", & 
                    "vdiodesscm2a=1.0","RLinsscm2a=0.01", & 
                    "RLoutsscm2a=0.02","RCoutsscm2a=1.0", & 
                    "trampsscm2a=30.0e-3") 
 
 
   !--------------LOADS FED FROM BUSSES 1 & 2----------! 
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      !~~~~~~position a~~~~~~! 
         !diode bridge 
         DIOBRAVM(db12a, voutsscm1a,voutsscm2a,vdc12a,faultdb1a,faultdb2a, 
& 
                         ioutsscm1a,ioutsscm2a,idc12a, & 
                         "L1db12a=1.0e-6","r1db12a=0.01", & 
                         "L2db12a=1.0e-6","r2db12a=0.01") 
 
         !SSIM 
         ASSIM(ssim12a, opssim12a,iqim12a,idim12a,idc12a, & 
                        voqssim12a,vodssim12a,vdc12a, & 
                        "cdcssim12a=1000.0e-6", & 
                        "rlfssim12a=0.05","lfssim12a=20.0e-6", & 
                        "cfssim12a=30.0e-6","rfssim12a=0.2", & 
                        "voutstarssim12a=359.26","wessim12a=377.0", & 
                        "cfestssim12a=30.0e-6", & 
                        "kpvssim12a=0.8","kivssim12a=25.0", & 
                        "kpissim12a=0.11","kiissim12a=750.0", & 
                        "ilimitssim12a=742.07") 
 
         !50 HP induction motor 
         INDUCTQD(im12a, voqssim12a,vodssim12a,wessim12a,wrmim12a, & 
                         iqim12a,idim12a,teim12a, & 
                         "rsim12a=0.087","Llsim12a=0.0008011", & 
                         "Lmim12a=0.03469","rrpim12a=0.228", & 
                         "Llrpim12a=0.0008011","nPim12a=4.0", & 
                         "lamdsicim12a=0.0","lamdrpicim12a=0.0") 
         ROTOR(im12a, teim12a,tlim12a, wrmim12a, & 
                      "Jim12a=1.662","wrmicim12a=0.0") 
         SPEEDLD(im12a, wrmim12a, tlim12a, & 
                        "wrmbaserpmim12a=1705.0","tlbaseim12a=198.0") 
 
   !---------AC BUS 3-------------------------------------! 
 
 PROCEDURAL (vmagb3, imagb3 = voqssim12a, vodssim12a, iqim12a, idim12a) 
      ! Bus 3 Voltage Magnitude 
        vmagb3 = SQRT(voqssim12a**2 + vodssim12a**2)*root3o2 
      ! Bus 3 Load Current Magnitude 
        imagb3 = SQRT(iqim12a**2 + idim12a**2)*root3o2 
      END !procedural 
 
   !-------Transmission Lines--------------------------! 
 
      !transmission line between busses 1 and 3 
      DCTXLINE(tran13, optran13,vbus1,vbus3, itran13, & 
                       "Ltran13=10.0e-6","Rtran13=0.01") 
 
      !transmission line between busses 2 and 4 
      DCTXLINE(tran24, optran24,vbus2,vbus4, itran24, & 
                       "Ltran24=10.0e-6","Rtran24=0.01") 
 
 
   !---------DC BUS 3-------------------------------------! 
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      !calculate bus voltage 
      pvbus3 = (itran13 - ilinsscm3a - ilinsscm3b)/(Cinsscm3a + Cinsscm3b) 
      vbus3 = INTEG(pvbus3, 0.0) 
 
      PROCEDURAL(ibus3 = ioutsscm3a) 
 ibus3  = ioutsscm3a 
 END ! Procedural 
 
      !sscm3a 
      ASSCM(sscm3a, opsscm3a,vbus3,ioutsscm3a, & 
                    ilinsscm3a,Cinsscm3a,voutsscm3a, & 
                    "vinstarsscm3a=1100.0","vrefsscm3a=900.0", & 
                    "Cin1sscm3a=500.0e-6","Cin2sscm3a=100.0e-6", & 
                    "Coutsscm3a=1.0e-3","Linsscm3a=70.0e-6", & 
                    "Loutsscm3a=100.0e-6","kpsscm3a=2.0e-3", & 
                    "kisscm3a=0.7","fswsscm3a=20.0e3", & 
                    "tausscm3a=7.96e-6","vswsscm3a=1.0", & 
                    "vdiodesscm3a=1.0","RLinsscm3a=0.01", & 
                    "RLoutsscm3a=0.02","RCoutsscm3a=1.0", & 
                    "trampsscm3a=30.0e-3") 
 
      !sscm3b 
      ASSCM(sscm3b, opsscm3b,vbus3,ioutsscm3b, & 
                    ilinsscm3b,Cinsscm3b,voutsscm3b, & 
                    "vinstarsscm3b=1100.0","vrefsscm3b=900.0", & 
                    "Cin1sscm3b=500.0e-6","Cin2sscm3b=100.0e-6", & 
                    "Coutsscm3b=1.0e-3","Linsscm3b=70.0e-6", & 
                    "Loutsscm3b=100.0e-6","kpsscm3b=2.0e-3", & 
                    "kisscm3b=0.7","fswsscm3b=20.0e3", & 
                    "tausscm3b=7.96e-6","vswsscm3b=1.0", & 
                    "vdiodesscm3b=1.0","RLinsscm3b=0.01", & 
                    "RLoutsscm3b=0.02","RCoutsscm3b=1.0", & 
                    "trampsscm3b=30.0e-3") 
 
 
   !---------DC BUS 4-------------------------------------! 
 
      !calculate bus voltage 
      pvbus4 = (itran24 - ilinsscm4a - ilinsscm4b)/(Cinsscm4a + Cinsscm4b) 
      vbus4 = INTEG(pvbus4, 0.0) 
 
      PROCEDURAL(ibus4 = ioutsscm4a) 
 ibus4  = ioutsscm4a 
 END ! Procedural 
 
      !sscm4a 
      ASSCM(sscm4a, opsscm4a,vbus4,ioutsscm4a, & 
                    ilinsscm4a,Cinsscm4a,voutsscm4a, & 
                    "vinstarsscm4a=1100.0","vrefsscm4a=860.0", & 
                    "Cin1sscm4a=500.0e-6","Cin2sscm4a=100.0e-6", & 
                    "Coutsscm4a=1.0e-3","Linsscm4a=70.0e-6", & 
                    "Loutsscm4a=100.0e-6","kpsscm4a=2.0e-3", & 
                    "kisscm4a=0.7","fswsscm4a=20.0e3", & 
                    "tausscm4a=7.96e-6","vswsscm4a=1.0", & 
                    "vdiodesscm4a=1.0","RLinsscm4a=0.01", & 
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                    "RLoutsscm4a=0.02","RCoutsscm4a=1.0", & 
                    "trampsscm4a=30.0e-3") 
 
      !sscm4b 
      ASSCM(sscm4b, opsscm4b,vbus4,ioutsscm4b, & 
                    ilinsscm4b,Cinsscm4b,voutsscm4b, & 
                    "vinstarsscm4b=1100.0","vrefsscm4b=860.0", & 
                    "Cin1sscm4b=500.0e-6","Cin2sscm4b=100.0e-6", & 
                    "Coutsscm4b=1.0e-3","Linsscm4b=70.0e-6", & 
                    "Loutsscm4b=100.0e-6","kpsscm4b=2.0e-3", & 
                    "kisscm4b=0.7","fswsscm4b=20.0e3", & 
                    "tausscm4b=7.96e-6","vswsscm4b=1.0", & 
                    "vdiodesscm4b=1.0","RLinsscm4b=0.01", & 
                    "RLoutsscm4b=0.02","RCoutsscm4b=1.0", & 
                    "trampsscm4b=30.0e-3") 
 
 
   !--------------LOADS FED FROM BUSSES 3 & 4----------! 
 
      !~~~~~~position a~~~~~~! 
         !diode bridge 
         DIOBRAVM(db34a, voutsscm3a,voutsscm4a,vdc34a,faultdb3a,faultdb4a, 
& 
                         ioutsscm3a,ioutsscm4a,idc34a, & 
                         "L1db34a=1.0e-6","r1db34a=0.01", & 
                         "L2db34a=1.0e-6","r2db34a=0.01") 
 
         !resistive load 
         DCRESLD(res34a, opres34a,idc34a, vdc34a, & 
                         "cdcres34a=1000.0e-6","rdcres34a=4.05") 
 
      !~~~~~~position b~~~~~~! 
         !diode bridge 
         DIOBRAVM(db34b, voutsscm3b,voutsscm4b,vdc34b,faultdb3b,faultdb4b, 
& 
                         ioutsscm3b,ioutsscm4b,idc34b, & 
                         "L1db34b=1.0e-6","r1db34b=0.01", & 
                         "L2db34b=1.0e-6","r2db34b=0.01") 
 
         !induction motor controller 
         MC(mc34b, opmc34b,idc34b,iqim34b,idim34b, & 
                   wrmim34b,wrmstarim34b, & 
                   vdc34b,vqim34b,vdim34b,weim34b, & 
                   "cdcmc34b=100.0e-6","taumc34b=0.1", & 
                   "rsmc34b=0.087","Lssmc34b=3.549e-2", & 
                   "wbemc34b=377.0","vdcicmc34b=0.0", & 
                   "accllmc34b=-4.0","acculmc34b=30.0", & 
                   "npmc34b=4.0","kpmc34b=1.0", & 
                   "kimc34b=20.0","vsmaxmc34b=375.5") 
 
         !50 HP induction motor 
         INDUCTQD(im34b, vqim34b,vdim34b,weim34b,wrmim34b, & 
                         iqim34b,idim34b,teim34b, & 
                         "rsim34b=0.087","Llsim34b=0.8011e-3", & 
                         "Lmim34b=34.69e-3","rrpim34b=0.228", & 
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                         "Llrpim34b=0.8011e-3","nPim34b=4.0", & 
                         "lamdsicim34b=0.0","lamdrpicim34b=0.0") 
         ROTOR(im34b, teim34b,tlim34b, wrmim34b, & 
                      "Jim34b=1.662","wrmicim34b=0.0") 
         SPEEDLD(im34b, wrmim34b, tlim34b, & 
                        "wrmbaserpmim34b=1705.0","tlbaseim34b=198.0") 
 
 
     END !Derivative 
 
     SRFD(1,qe)  
     apwspd(pwsp,we,oppwsp) 
 
     DISCRETE cbcontrol 
       ASMSATD(sm,cbsm) 
     END ! DISCRETE   
 
  END ! Dynamic 
 
END ! Program 
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12.3 Appendix C – IPS ACSL Simulation Commands 
 
!---------------------------------------------------------------------! 
!                                                                     ! 
! Authors:   S.F. Glover, B.T. Kuhn, S.D. Sudhoff                     ! 
!            Purdue University                                        ! 
!            Department of Electrical and Computer Engineering        ! 
!            1285 Electrical Engineering Building                     ! 
!            West Lafayette, IN 47907                                 ! 
!            (765)-494-3246                                           ! 
! For:       Roger A. Dougal                                          ! 
!            University of South Carolina                             ! 
!            Department of Electrical and Computer Engineering        ! 
!            Columbia, South Carolina  29208                          ! 
!            Award # 97-364 - Modeling and Translator Development     ! 
! Date:      4/16/99                                                  ! 
! Version:   1.0                                                      ! 
!                                                                     ! 
! Modified:  E.L. Zivi for 1/C Cerrito Trident Research 4/1/00        ! 
!                                                                     ! 
!---------------------------------------------------------------------! 
s hvdprn=.f. 
s weditg=.f. !write events to log file 
s strplt=.t. !strip plots 
s calplt=.f. !plots on one graph 
s alcplt=.f. !no colored plots 
s cjvitg=.f. !turns off checking of jacobian validity 
 
output t,cioitg,cssitg /nciout=10 
 
prepare t         ! needed for output command 
prepare wrmimprop ! prop shaft speed 
 
   !----------AC Bus 1----------------------------------------------! 
prepare imagb1    ! AC Bus 1 Generator Supply Current Magnitude 
prepare imagprop  ! AC Bus 1 Propulsion Load Current Magnitude 
! << neural net data starts here >> 
prepare imagserv  ! AC Bus 1 Ships Service Load Current Magnitude 
prepare vmagb1 ! AC Bus 1 Voltage Magnitude 
 
   !---------DC BUS 1----------------------------------------------! 
prepare vbus1 ! DC Bus 1 voltage 
prepare ibus1 ! DC Bus 1 total current (load + bus3) 
prepare ibus1load ! DC Bus 1 load current 
 
   !---------DC BUS 2----------------------------------------------! 
prepare vbus2 ! DC Bus 2 voltage 
prepare ibus2 ! DC Bus 2 total current (load + bus3) 
prepare ibus2load ! DC Bus 2 load current 
 
   !---------AC BUS 3----------------------------------------------! 
prepare vmagb3 ! AC Bus 3 Voltage Magnitude      
prepare imagb3 ! AC Bus 3 Load Current Magnitude 
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   !---------DC BUS 3----------------------------------------------! 
prepare vbus3 ! DC Bus 3 voltage 
prepare ibus3 ! DC Bus 3 total current = load current 
 
   !---------DC BUS 4----------------------------------------------! 
prepare vbus4 ! DC Bus 4 voltage 
prepare ibus4 ! DC Bus 4 total current = load current 
 
   !---------DC BUS 3/4 Load B Converters--------------------------! 
prepare voutsscm3b ! voltage from Bus 3 to diode bridge 
prepare voutsscm4b ! voltage from Bus 3 to diode bridge 
prepare vdc34b  ! voltage out of auctioneering diodes 
prepare ioutsscm3b ! current from Bus 3 to diode bridge 
prepare ioutsscm4b ! current from Bus 4 to diode bridge 
prepare idc34b  ! current out of auctioneering diodes 
! << neural net data ends here >> 
 
   !---------DC BUS 3/4 Load B Motor Drive------------------------! 
prepare wrmim34b    ! commanded motor speed, rad/sec 
prepare wrmstarim34b ! actual motor speed, rad/sec 
 
PROCEDURE initrun    ! establish standard initial alignment 
   s tic=-5 ! need time to reach steady state 
   action /var=tic/val=.t./loc=cnntpwsp1  ! connect DC bus 1 
   action /var=tic/val=.t./loc=cnntpwsp2  ! connect DC bus 2 
   action /var=tic/val=.t./loc=oppwsp  ! turn on AC/DC power supply 
   action /var=tic/val=.t./loc=optran13  ! connect DC bus 1 -> 3 
   action /var=tic/val=.t./loc=optran24  ! connect DC bus 2 -> 4 
   action /var=tic/val=.f./loc=opsscm1a  ! ship service converters off 
   action /var=tic/val=.f./loc=opsscm2a 
   action /var=tic/val=.f./loc=opsscm3a 
   action /var=tic/val=.f./loc=opsscm3b 
   action /var=tic/val=.f./loc=opsscm4a 
   action /var=tic/val=.f./loc=opsscm4b 
   action /var=tic/val=.f./loc=opssim12a  ! ship service inverter off 
   action /var=tic/val=.f./loc=opmcprop  ! propulsion off 
   action /var=tic/val=180/loc=wrmstarim34b ! cmd induction motor 1719 rpm  
   action /var=tic/val=0.0/loc=wrmstarprop ! cmd prop. zero shaft speed 
END !initrun 
 
PROCEDURE plotrun ! standard plots for each run 
   ! AC Bus 1 voltage, AC Bus 1, ship service, propulsion current  
   plot/xlo=0.0 vmagb1/lo=4100/hi=4220,imagb1/lo=0/hi=7500, & 
        imagserv/lo=0/hi=100,wrmimprop/lo=0/hi=15 
   ! DC Bus 1,2 voltage, current  
   plot/xlo=0.0 vbus1/lo=1000/hi=1200,ibus1/lo=0/hi=300, & 
        vbus2/lo=1000/hi=1200,ibus2/lo=0/hi=300 
   ! DC Bus 1,2 loads, AC Bus 3 voltage, current 
   plot/xlo=0.0 ibus1load/lo=0/hi=50,ibus2load/lo=0/hi=50 & 
        vmagb3/lo=400/hi=500,imagb3/lo=0/hi=100 
   ! DC Bus 3,4 voltage, current 
   plot/xlo=0.0 vbus3/lo=1000/hi=1200,ibus3/lo=0/hi=300, & 
        vbus4/lo=1000/hi=1200,ibus4/lo=0/hi=300 
   ! motor drive supply voltages, drive voltages, command 
   plot/xlo=0.0 voutsscm3b/lo=600/hi=1000,voutsscm4b/lo=600/hi=1000, & 
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        vdc34b/lo=600/hi=1000,wrmstarim34b/lo=0/hi=200 
   ! motor drive supply currents, drive current, motor speed 
   plot/xlo=0.0 ioutsscm3b/lo=0/hi=100,ioutsscm4b/lo=0/hi=100, & 
        idc34b/lo=0/hi=100,wrmim34b/lo=0/hi=200 
END ! plotrun 
 
PROCEDURE plotinit ! standard plots for each run w/ initial transients 
   ! AC Bus 1 voltage, AC Bus 1, ship service, propulsion current  
   plot/xaxis=t/xlo=-5 vmagb1/lo=0/hi=4300,imagb1/lo=0/hi=7500, & 
                       imagserv/lo=0/hi=100,wrmimprop/lo=0/hi=15 
   ! DC Bus 1,2 voltage, current  
   plot/xaxis=t/xlo=-5 vbus1/lo=0/hi=1200,ibus1/lo=0/hi=300, & 
                       vbus2/lo=0/hi=1200,ibus2/lo=0/hi=300 
   ! DC Bus 1,2 loads, AC Bus 3 voltage, current 
   plot/xaxis=t/xlo=-5 ibus1load/lo=0/hi=50,ibus2load/lo=0/hi=50 & 
                       vmagb3/lo=0/hi=500,imagb3/lo=0/hi=100 
   ! DC Bus 3,4 voltage, current 
   plot/xaxis=t/xlo=-5 vbus3/lo=0/hi=1200,ibus3/lo=0/hi=300, & 
        vbus4/lo=0/hi=1200,ibus4/lo=0/hi=300 
   ! motor drive supply voltages, drive voltages, command 
   plot/xaxis=t/xlo=-5 voutsscm3b/lo=0/hi=1000,voutsscm4b/lo=0/hi=1000, & 
        vdc34b/lo=0/hi=1000,wrmstarim34b/lo=0/hi=200 
   ! motor drive supply currents, drive current, motor speed 
   plot/xaxis=t/xlo=-5 ioutsscm3b/lo=0/hi=100,ioutsscm4b/lo=0/hi=100, & 
        idc34b/lo=0/hi=100,wrmim34b/lo=0/hi=200 
END ! plotinit 
 
PROCEDURE run1 ! IPS Motor Start: DC Bus 1,3 DC Load 
   initrun  ! set generic initial conditions 
   action /var=tic/val=.f./loc=cnntpwsp2  ! disconnect DC bus 2 
   !turn on the system components, start motor at t = 0.0 
   action /var=-4.9/val=.t./loc=opsscm3a  ! DC bus 3 converters on 
   action /var=-4.9/val=.t./loc=opsscm3b 
   action /var=-4.9/val=.t./loc=opres34a  ! DC bus 3/4 resistive load 
   action /var=0.0/val=.t./loc=opmc34b  ! DC bus 3/4 induction motor 
 
   !start the study 
   s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4 
   start 
   s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4 
   cont   
   s title=120*" " ! clear title   
   ! plot title 1234567890123456789012345678901234567890 
   s title(01)="IPS Motor Start Run 1" 
   s title(41)="DC Bus 1,3 Energized" 
   s title(81)="DC Load On"    
   ! plotrun  ! standard plots 
   ! print/noheader/file="run1.txt"/all 
   action /clear 
END !run1 
 
PROCEDURE run2 ! IPS Motor Start: DC Bus 2,4 DC Load 
   initrun  ! set generic initial conditions 
   action /var=tic/val=.f./loc=cnntpwsp1  ! disconnect DC bus 1 
   !turn on the system components, start motor at t = 0.0 
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   action /var=-4.9/val=.t./loc=opsscm4a  ! DC bus 4 converters on 
   action /var=-4.9/val=.t./loc=opsscm4b 
   action /var=-4.9/val=.t./loc=opres34a  ! DC bus 3/4 resistive load 
   action /var=0.0/val=.t./loc=opmc34b  ! DC bus 3/4 induction motor 
 
   !start the study 
   s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4 
   start 
   s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4 
   cont   
   s title=120*" " ! clear title   
   ! plot title 1234567890123456789012345678901234567890 
   s title(01)="IPS Motor Start Run 2" 
   s title(41)="DC Bus 2,4 Energized" 
   s title(81)="DC Load On"    
   ! plotrun  ! standard plots 
   ! print/noheader/file="run2.txt"/all 
   action /clear 
END !run2 
 
PROCEDURE run3 ! IPS Motor Start: DC Bus 2,4 AC+DC Loads 
   initrun  ! set generic initial conditions 
   action /var=tic/val=.f./loc=cnntpwsp1  ! disconnect DC bus 1 
   !turn on the system components, start motor at t = 0.0 
   action /var=-4.9/val=.t./loc=opsscm4a  ! DC bus 4 converters on 
   action /var=-4.9/val=.t./loc=opsscm4b 
   action /var=-4.9/val=.t./loc=opres34a  ! DC bus 3/4 resistive load 
   action /var=-4.7/val=.t./loc=opsscm2a  ! DC bus 2 converter on 
   action /var=-4.5/val=.t./loc=opssim12a  ! ship service inverter on 
   action /var=0.0/val=.t./loc=opmc34b  ! DC bus 3/4 induction motor 
 
   !start the study 
   s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4 
   start 
   s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4 
   cont   
   s title=120*" " ! clear title   
   ! plot title 1234567890123456789012345678901234567890 (40 
characters/line) 
   s title(01)="IPS Motor Start Run 3" 
   s title(41)="DC Bus 2,4 AC Bus 3 Energized" 
   s title(81)="DC Load, AC Load  On"    
   ! plotrun  ! standard plots 
   ! print/noheader/file="run3.txt"/all 
   action /clear 
END !run3 
 
PROCEDURE run4 ! IPS Motor Start: Bus 1,2,4 AC+DC Loads 
   initrun  ! set generic initial conditions 
   action /var=tic/val=.f./loc=optran13  ! disconnect DC bus 1 -> 3 
   !turn on the system components, start motor at t = 0.0 
   action /var=-4.9/val=.t./loc=opsscm4a  ! DC bus 4 converters on 
   action /var=-4.9/val=.t./loc=opsscm4b 
   action /var=-4.9/val=.t./loc=opres34a  ! DC bus 3/4 resistive load 
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   action /var=-4.8/val=.t./loc=opsscm1a  ! DC bus 1 converter on 
  
   action /var=-4.7/val=.t./loc=opsscm2a  ! DC bus 2 converter on 
   action /var=-4.5/val=.t./loc=opssim12a  ! ship service inverter on 
   action /var=0.0/val=.t./loc=opmc34b  ! DC bus 3/4 induction motor 
 
   !start the study 
   s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4 
   start 
   s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4 
   cont   
   s title=120*" " ! clear title   
   ! plot title 1234567890123456789012345678901234567890 
   s title(01)="IPS Motor Start Run 4" 
   s title(41)="DC Bus 1,2,4 AC Bus 3 Energized" 
   s title(81)="DC Load, AC Load  On"    
   ! plotrun  ! standard plots 
   ! print/noheader/file="run4.txt"/all 
   action /clear 
END !run4 
 
PROCEDURE run5 ! IPS Motor Start: Bus 1,2,3a,4 AC+DC Loads 
   initrun  ! set generic initial conditions 
   !turn on the system components, start motor at t = 0.0 
   action /var=-4.9/val=.t./loc=opsscm4a  ! DC bus 4 converters on 
   action /var=-4.9/val=.t./loc=opsscm4b 
   action /var=-4.9/val=.t./loc=opres34a  ! DC bus 3/4 resistive load 
   action /var=-4.8/val=.t./loc=opsscm1a  ! DC bus 1 converter on 
  
   action /var=-4.7/val=.t./loc=opsscm2a  ! DC bus 2 converter on 
   action /var=-4.8/val=.t./loc=opsscm3a  ! DC Bus 3a converter 
   action /var=-4.5/val=.t./loc=opssim12a  ! ship service inverter on 
   action /var=0.0/val=.t./loc=opmc34b  ! DC bus 3/4 induction motor 
   !start the study 
   s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4 
   start 
   s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4 
   cont   
   s title=120*" " ! clear title   
   ! plot title 1234567890123456789012345678901234567890 
   s title(01)="IPS Motor Start Run 5" 
   s title(41)="DC Bus 1,2,3a,4 AC Bus 3 Energized" 
   s title(81)="DC Load, AC Load  On"    
   ! plotrun  ! standard plots 
   ! print/noheader/file="run5.txt"/all 
   action /clear 
END !run5 
 
PROCEDURE run6 ! IPS Motor Start: Bus 1,2,3a,4 AC+DC Loads 
   initrun  ! set generic initial conditions 
   !turn on the system components, start motor at t = 0.0 
   action /var=-4.9/val=.t./loc=opsscm4a  ! DC bus 4 converters on 
   action /var=-4.9/val=.t./loc=opsscm4b 
   action /var=-4.9/val=.t./loc=opres34a  ! DC bus 3/4 resistive load 
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   action /var=-4.8/val=.t./loc=opsscm1a  ! DC bus 1 converter on 
  
   action /var=-4.7/val=.t./loc=opsscm2a  ! DC bus 2 converter on 
   action /var=-4.8/val=.t./loc=opsscm3a  ! DC Bus 3a converters 
   action /var=-4.8/val=.t./loc=opsscm3b 
   action /var=-4.5/val=.t./loc=opssim12a  ! ship service inverter on 
   action /var=0.0/val=.t./loc=opmc34b  ! DC bus 3/4 induction motor 
   !start the study 
   s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4 
   start 
   s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4 
   cont   
   s title=120*" " ! clear title   
   ! plot title 1234567890123456789012345678901234567890 
   s title(01)="IPS Motor Start Run 6" 
   s title(41)="DC Bus 1,2,3a,4 AC Bus 3 Energized" 
   s title(81)="DC Load, AC Load  On"    
   ! plotrun  ! standard plots 
   ! print/noheader/file="run6.txt"/all 
   action /clear 
END !run6 
 
PROCEDURE run7 ! IPS Motor Start: Bus 1,2,3a,3b AC+DC Loads 
   initrun  ! set generic initial conditions 
   action /var=tic/val=.f./loc=optran24  ! disconnect DC bus 2 -> 4 
   !turn on the system components, start motor at t = 0.0 
   action /var=-4.9/val=.t./loc=opsscm1a  ! DC bus 1 converter on 
  
   action /var=-4.9/val=.t./loc=opsscm2a  ! DC bus 2 converter on 
   action /var=-4.9/val=.t./loc=opsscm3a  ! DC Bus 3 converters on 
   action /var=-4.9/val=.t./loc=opsscm3b 
   action /var=-4.9/val=.t./loc=opres34a  ! DC bus 3/4 resistive load 
   action /var=-4.5/val=.t./loc=opssim12a  ! ship service inverter on 
   action /var=0.0/val=.t./loc=opmc34b  ! DC bus 3/4 induction motor 
 
   !start the study 
   s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4 
   start 
   s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4 
   cont   
   s title=120*" " ! clear title   
   ! plot title 1234567890123456789012345678901234567890 
   s title(01)="IPS Motor Start Run 7" 
   s title(41)="DC Bus 1,2,3a,3b AC Bus 3 Energized" 
   s title(81)="DC Load, AC Load  On"    
   ! plotrun  ! standard plots 
   ! print/noheader/file="run7.txt"/all 
   action /clear 
END !run7 
 
PROCEDURE run8 ! IPS Motor Start: Bus 1,3 AC+DC Loads 
   initrun  ! set generic initial conditions 
   action /var=tic/val=.f./loc=cnntpwsp2  ! disconnect DC bus 2 
   action /var=tic/val=.f./loc=optran24  ! disconnect DC bus 2 -> 4 
   !turn on the system components, start motor at t = 0.0 
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   action /var=-4.9/val=.t./loc=opsscm1a  ! DC bus 1 converter on 
  
   action /var=-4.9/val=.t./loc=opsscm3a  ! DC Bus 3 converters on 
   action /var=-4.9/val=.t./loc=opsscm3b 
   action /var=-4.9/val=.t./loc=opres34a  ! DC bus 3/4 resistive load 
   action /var=-4.5/val=.t./loc=opssim12a  ! ship service inverter on 
   action /var=0.0/val=.t./loc=opmc34b  ! DC bus 3/4 induction motor 
 
   !start the study 
   s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4 
   start 
   s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4 
   cont   
   s title=120*" " ! clear title   
   ! plot title 1234567890123456789012345678901234567890 
   s title(01)="IPS Motor Start Run 8" 
   s title(41)="DC Bus 1,3 AC Bus 3 Energized" 
   s title(81)="DC Load, AC Load  On"    
   ! plotrun  ! standard plots 
   ! print/noheader/file="run8.txt"/all 
   action /clear 
END !run8 
 
PROCEDURE test1init 
s nrwitg=.t. 
run1 
s psfspl=0.9 
s devplt=5 
file/pltfile='run1init.ps' 
plotinit 
plot/close 
s nrwitg=.f. 
END ! test1init 
 
PROCEDURE test1 
s nrwitg=.f. 
run1 
s psfspl=0.9 
s devplt=5 
file/pltfile='run1.ps' 
plotrun 
plot/close 
print/noheader/file="run1.txt"/all 
s nrwitg=.f. 
END ! test1init 
 
PROCEDURE test2init 
s nrwitg=.t. 
run2 
s psfspl=0.9 
s devplt=5 
file/pltfile='run2init.ps' 
plotinit 
plot/close 
s nrwitg=.f. 
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END ! test2init 
 
PROCEDURE test2 
s nrwitg=.f. 
run2 
s psfspl=0.9 
s devplt=5 
file/pltfile='run2.ps' 
plotrun 
plot/close 
print/noheader/file="run2.txt"/all 
s nrwitg=.f. 
END ! test2init 
 
PROCEDURE test3init 
s nrwitg=.t. 
run3 
s psfspl=0.9 
s devplt=5 
file/pltfile='run3init.ps' 
plotinit 
plot/close 
s nrwitg=.f. 
END ! test3init 
 
PROCEDURE test3 
s nrwitg=.f. 
run3 
s psfspl=0.9 
s devplt=5 
file/pltfile='run3.ps' 
plotrun 
plot/close 
print/noheader/file="run3.txt"/all 
s nrwitg=.f. 
END ! test3init 
 
PROCEDURE test4init 
s nrwitg=.t. 
run4 
s psfspl=0.9 
s devplt=5 
file/pltfile='run4init.ps' 
plotinit 
plot/close 
s nrwitg=.f. 
END ! test4init 
 
PROCEDURE test4 
s nrwitg=.f. 
run4 
s psfspl=0.9 
s devplt=5 
file/pltfile='run4.ps' 
plotrun 
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plot/close 
print/noheader/file="run4.txt"/all 
s nrwitg=.f. 
END ! test4init 
 
 
PROCEDURE test5init 
s nrwitg=.t. 
run5 
s psfspl=0.9 
s devplt=5 
file/pltfile='run5init.ps' 
plotinit 
plot/close 
s nrwitg=.f. 
END ! test5init 
 
PROCEDURE test5 
s nrwitg=.f. 
run5 
s psfspl=0.9 
s devplt=5 
file/pltfile='run5.ps' 
plotrun 
plot/close 
print/noheader/file="run5.txt"/all 
s nrwitg=.f. 
END ! test5init 
 
PROCEDURE test6init 
s nrwitg=.t. 
run6 
s psfspl=0.9 
s devplt=5 
file/pltfile='run6init.ps' 
plotinit 
plot/close 
s nrwitg=.f. 
END ! test6init 
 
PROCEDURE test6 
s nrwitg=.f. 
run6 
s psfspl=0.9 
s devplt=5 
file/pltfile='run6.ps' 
plotrun 
plot/close 
print/noheader/file="run6.txt"/all 
s nrwitg=.f. 
 
END ! test7init 
PROCEDURE test7init 
s nrwitg=.t. 
run7 
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s psfspl=0.9 
s devplt=5 
file/pltfile='run7init.ps' 
plotinit 
plot/close 
s nrwitg=.f. 
END ! test7init 
 
PROCEDURE test7 
s nrwitg=.f. 
run7 
s psfspl=0.9 
s devplt=5 
file/pltfile='run7.ps' 
plotrun 
plot/close 
print/noheader/file="run7.txt"/all 
s nrwitg=.f. 
END ! test7init 
 
PROCEDURE test8init 
s nrwitg=.t. 
run8 
s psfspl=0.9 
s devplt=5 
file/pltfile='run8init.ps' 
plotinit 
plot/close 
s nrwitg=.f. 
END ! test8init 
 
PROCEDURE test8 
s nrwitg=.f. 
run8 
s psfspl=0.9 
s devplt=5 
file/pltfile='run8.ps' 
plotrun 
plot/close 
print/noheader/file="run8.txt"/all 
s nrwitg=.f. 
END ! test8init 
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12.4 Appendix D – Filter for Data Compatability  
 
% filter for 1/C Cerrito neural net project 
% E. Zivi    4/1/00 
 
i=input('Enter run # : '); 
varname=['run' num2str(i)]; 
infilename=[varname '.txt']; 
outfilename=[varname 'f.nna']; 
load(infilename); 
cutx=eval([varname '(:,6:25)']); 
[r,c]=size(cutx); 
shiftx=[cutx(1:r-1,:) cutx(2:r,:) cutx(1:r-1,:)]; 
fid=fopen(outfilename,'w'); 
for i=1:r-1, 
   fprintf(fid,'%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f\n',shiftx(i,:)); 
end 
fclose(fid); 
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12.5 Appendix E – Fault Data Filter   
 
% Fault Data Filter for neural net project 
% J. Cerrito    4/7/00 
 
i=input('Enter run # : '); 
varname=['run' num2str(i)]; 
infilename=[varname '.txt']; 
outfilename=[varname 'falt.nna']; 
load(infilename); 
matrixf=eval([varname '(:,:)']); 
[r,c]=size(matrixf); 
 
for i=1:r, 
   for j=1:c-20,   
      sign=rand(1); 
      if (sign<.6 & sign>.4) 
      matrixf(i,j)=matrixf(i,j); 
      end 
      if sign>=.6 
      matrixf(i,j)=((.1*rand(1)*matrixf(i,j))+matrixf(i,j)); 
      end 
      if sign<.4 
      matrixf(i,j)=(matrixf(i,j)-(.1*rand(1)*matrixf(i,j))); 
      end      
   end 
end    
fid=fopen(outfilename,'w'); 
for i=1:r-1, 
   fprintf(fid,'%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f 
%12.4f %12.4f\n',matrixf(i,:)); 
end 
fclose(fid); 
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12.6 Appendix F – 40-20 Variable Structure Neural Network:  Run 1 
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12.7 Appendix G – 40-20 Variable Structure Neural Network: Run 5 
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12.8 Appendix H – 40-20 Faulted Neural Network:  Run 6 Corrupted 
Data 
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